2. Assignment NMST 539

Frantisek Helebrand

February 2022

1 First part

In the first part of the assignment let assume two-dimensional distribution of random vector $(X, Y)^{T}$ over the set $M=\left\{(x, y) \in \mathbb{R}^{2} ; 0<x<y<1\right\}$. We will derive the joint density $f_{X Y}(x, y)$ and marginal densities $f_{X}(x), f_{Y}(y)$.

We know that the density has to be in form $c \mathbb{1}_{M}$, where $c \in \mathbb{R}$ and $\mathbb{1}_{M}$ is an indicator of the set M. Due to th properties of density, the following equation holds.

$$
1=\int_{0}^{1} \int_{0}^{1} c \mathbb{1}_{M} d y d x=\int_{0}^{1} \int_{x}^{1} c d y d x=\frac{c}{2} .
$$

From here, we can easily obtain $c=2$ and the joint density function is $f_{X Y}(x, y)=2 \mathbb{1}_{M}$. We can derive the marginal densities by integrating.

$$
\begin{gathered}
f_{X}(x)=\int_{x}^{1} 2 \mathbb{1}_{(0,1)} d y=2 y \mathbb{1}_{(0,1)} \\
f_{Y}(y)=\int_{0}^{y} 2 \mathbb{1}_{(0,1)} d x=2(1-x) \mathbb{1}_{(0,1)}
\end{gathered}
$$

We are also interested in the independence of variables X, Y. It can be seen that the variables are not independent because the following equation does not hold.

$$
f_{X Y}(x, y)=2 \mathbb{1}_{M} \neq 2(1-x) 2 y=f_{X}(x) f_{Y}(y) .
$$

Therefore the variables are not independent.

2 Second part

In the second part of the assignment, we will run a simulation to show that the variables follow the density derived in the first part. Our random sample has 1000 observations. Firstly we will compute the sample mean

$$
\binom{\bar{X}_{n}}{\bar{Y}_{n}}=\binom{0,3178}{0,6596}
$$

and sample covariance matrix

$$
\operatorname{cov}(X, Y)=\left(\begin{array}{ll}
0,0532 & 0,0263 \\
0,0263 & 0,0569
\end{array}\right)
$$

We also run a simulation and obtain figure 1 . We can see that joint density follows the density derived in the first part.

Figure 1

Figure 2

